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Abstract

One of the main focuses of smart industry is machinery failure predictive solutions. To achieve this, IoT-based
solutions have been widely deployed. However, data processing and decision making remain challenging. The
absence of enough knowledge has been the primarily limitation of statistical methods and supervised learning
methods. Therefore, unsupervised learning methods are gaining more popularity but still have limits to cover
effectively the pre-signs of failures due to the complexity of training process and results visualization.
Previously, we proposed a novel Big Data Analysis method on audio/vibration data to cover effectively the
pre-signs of failures through data visualization without complex learning or processing. We validated our
proposal on a demo system. In the present work, we are using part of the MIMII dataset to test our proposed
analysis method on a real-world-like data and verify the validity of our proposal on a more complex system. We
are showing that we can detect abnormal machine behaviors and predict failures without prior training or
knowledge of the target monitored machine.

Keywords: Failure predictive solutions; Big Data Analysis method; Audio/vibration data; Data visualization;
MIMII dataset

Introduction
Every mechanical and electromechanical system is ev-
idently subject to anomalies. Anomalies such as rust-
ing, or simply broken parts are common to most of the
machine types. However, every system has its specific
anomalies: misalignment for a gear system, contami-
nation for a valve, leaking for a pump or clogging for a
fan. No matter what is the type of failure or its causing
factor, if not detected in time and maintained properly,
the machine would eventually fail. Thus, an effective
maintenance technique is mandatory. Unfortunately,
certain abnormalities still defeat monitoring systems
and have catastrophic impact in terms of safety as well
as cost.

Several methods have been developed, whether to
correct anomalies when they happen, to prevent them
by scheduling machine maintenance or to try to be
a step ahead and predict them. As a matter of fact,
predictive solutions seemed the most effective mainte-
nance technique in terms of safety and cost. Condition-
Based Monitoring (CBM) is considered as one of the
most commonly used predictive maintenance solu-
tions. This approach relies on the monitoring of the
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machine and is based on three key components [1]:
data acquisition, data processing and decision mak-
ing. With the progress we are witnessing today in sen-
sor modules, wireless communication techniques, data
storage solutions and Big Data Analysis methods, IoT-
based solutions are massively developed. Fulfilling the
three key components of a CBM approach, IoT-based
predictive solution seems to be an effective application
of a CBM sensor-data-based method.

Machines have been known to be monitored via
the acquisition of certain sensor data: voltage and
current [2], temperature and pressure [3], vibration
[4, 5, 6, 7, 8, 9, 10] and sound [11, 12, 13, 14, 15, 16, 17].
Vibration and sound have been reported effective sen-
sor signals to characterize a machine behavior. A ma-
chine, even operating properly would vibrate and gen-
erate a certain sound. In case of abnormality, the ma-
chine frequency response would shift, and signal am-
plitudes would change accordingly. Therefore, with the
outstanding progress in sensor technologies, we are
able to achieve high-precision data acquisition to track
the machine behavior. However, data processing and
decision-making phase are still a challenge for IoT-
based failure predictive solutions since sensor data
analysis remains non-efficient for an accurate failure
prediction.
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The earliest algorithms for sensor data analysis were
based on statistical approaches in the purpose of de-
tecting abnormalities. Those methods were primarily
applicable to one-dimensional data [18] and gave two
possible predictions: poor or healthy condition. This
left infinite possibilities in the grey zone. Therefore, it
resulted in a high rate of fake-alarms or overlooking
abnormalities which made it a poor candidate for ma-
chinery failure prediction. And despite the efforts to
extend the statistical approaches to multidimensional
data, those methods suffered from “The Curse of Di-
mensionality” [19]. Learning methods dealt better with
the multidimensional space by working on having ef-
fective feature extractor which led to better results in
anomaly detection. However, in a real-world industrial
environment, an anomaly is rare to happen during a
short period of time. Moreover, it is impossible to cover
all possible anomalies or failure scenarios. Therefore,
it is difficult to construct an effective training dataset.
This presents the main limitation of applying super-
vised learning method for machine failure prediction
despite their success for audio data classification and
identification such as for Detection and Classification
of Acoustic Scenes and Events challenge (DCASE).
Thus, unsupervised methods gained more popularity
and is being more commonly used for machine failure
detection.

In our previous paper [11], we proposed a Big Data
Analysis method that could be applied on sound or vi-
bration data collected from machines to detect anoma-
lies and predict failures without prior training. Our
method is intended to detect any type of anomaly:
experienced and not-experienced anomaly. Our pro-
posal permits to visualize signs of failure as soon as
the machine starts to have degradation. Such degra-
dation signs could be tracked and detected since day
1 without the need of enormous training dataset or
complex learning. In [11], we used a simple experimen-
tal environment to validate our hypothesis by mimick-
ing failures on a miniature DC-motor. Due to confi-
dentiality matter and internal data safety measures in
factories and plants, it is difficult to validate analysis
methods academically with real factory environment
data. Moreover, factories tend to have machines that
are not supposed to fail for a long period of time. As
a matter of fact, in [13], Purohit et al. affirmed that
there are no public datasets that focus on the sound
of industrial machines under normal and abnormal op-
erating conditions in real factory environments. Puro-
hit et al. then released MIMII dataset [20], a sound
dataset for Malfunctioning Industrial Machine Investi-
gation and Inspection, covering several machines with
normal and abnormal behavior. The purpose from the

MIMII dataset is to help machine-learning and signal-
processing community for the development of auto-
mated facility maintenance [13].

In [11], our hypothesis stated that the core analy-
sis can remain effective for failure detection using vi-
bration or sound data for different systems without
knowledge of the monitored machine or prior training.
In the present paper, we are using part of the MIMII
dataset to test the validity of our core analysis on a real
factory environment recorded audio data. We aim to
(1) verify the possibility of differentiating abnormal-
ities from normal operation in a complex monitored
machine. Furthermore, we aim to (2) test our predic-
tive scheme to detect failures by using the normal data
only as reference data. Therefore, we chose to work on
the valve data based on the comment of the MIMII
authors in [13] on the difficulty of detecting anomalies
for valve due to the non-stationary nature of the sound
signal.

The rest of the paper is organized as follows. We
start by briefly reviewing the different data analysis
methods used for vibration-based and audio-based fail-
ure predictive systems. Next, we present the outline of
our failure-predictive solution. Then, we apply our pre-
dictive scheme on part of the MIMII dataset to test
the possibility of detecting abnormalities using nor-
mal data only as reference data. Additionally, we run
our analysis scheme on the normal and abnormal data
combined and verify the validity of our prediction re-
sults. Finally, we discuss further our results and our
future directions and conclude the present work.

Related works
This paper is an application of our proposed data
analysis method on machine anomaly detection. In
[15], Koizumi et al. narrowed down the difference be-
tween the two categories to the definition of anoma-
lies. Supervised methods are for detecting “defined”
anomalies while unsupervised methods tackle the de-
tection of “unknown” anomalies. According to such
classification, our method falls into the category of
unsupervised-based methods for anomaly detection.

In this section we are reviewing briefly some of the
related works (supervised and unsupervised methods)
that used Big Data Analysis methods for machinery
anomaly detection based on sound or/and vibration
data. Moreover, we will review what, to the best of
our knowledge, has been developed and applied on the
MIMII dataset.

In the recent years, classification-based methods are
most commonly used. According to [21], those methods
learn a model (classifier) from a set of labeled data
(training) and then, classify a test instance into one of
the classes using the learned model (testing).
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Several approaches such as Neural Networks (NN)
and Support Vector Machines (SVM) have been de-
ployed for machine anomaly detection. In [4], Windau
and Itti proposed Inertial Machine Monitoring System
(IMMS). This work tested the use of statistical fea-
tures and the use of vibration frequency diagrams with
SVM and NN to classify normal operation vs. 10 types
of real- world abnormal equipment behavior. In [5],
Kanlar et al. led a comparative study on the use of an
Artificial Neural Network (ANN) and SVM on statis-
tical features from vibration data for fault diagnosis of
ball bearings. In [6], Zhang et al. proposed a method
for fault classification and prediction of degradation
of components and machines using vibration sensors.
Their method was based on the frequency-domain data
extracted features to train ANN to estimate the ma-
chine Remaining Useful Life (RUL).

However, recently Deep Neural Networks (DNN)
methods are being more commonly used for classifi-
cation mostly based on Autoencoder (AE) and Vari-
ational Autoencoder (VAE). In [8], Galloway et al.
used AE on spectrograms from raw vibration data of
a tidal turbine in comparison to statistically extracted
features used with SVM. In [14], Koizumi et al. used
statistical approach by using Gaussian Mixture Model
(GMM) for anomaly score estimation with proposing
a method to optimize a DNN-based feature extrac-
tor for anomalous sound detection using VAE and an
objective function based on Neyman-Pearson Lemma
applied on machine audio data. While in [15], Koizumi
et al. proposed an end-to-end training using an AE for
both feature-extractor and normal model training by
using Neyman-Pearson Lemma as objective function.
In [16] Kawaguchi and Endo used an end-to-end Long
Short-Term Memory (LSTM) autoencoder on subsam-
pled signal using audio data for anomaly detection.
In [17] Oh and Yun used autoencoder on sound data
from a Surface-Mounted Device machine. And specifi-
cally, to the best of our knowledge, only Purohit et al.
in [13], used an unsupervised learning-based method
on the MIMII dataset. The authors used an AE on
log-Mel spectrum as extracted feature from the audio
frequency-domain data.

Despite the remarkable achievements of DNN for
machine anomaly detection and failure prediction,
this category of methods remains complex and un-
explainable due to their nested non-linear structure
[22]. And therefore, seen as the Black Box. In [23],
Jardine et al. mentioned that there are the two main
difficulties with neural networks: the difficulty to ob-
tain physical explanation of the trained model and the
difficulty of the training process. To apply those meth-
ods, factories then need to hire data scientists at a high
cost, and this can be complicated in some situations

requiring extra data privacy procedures. Those facts
present the main limitation for bringing such technolo-
gies from research and academia to industrial world.

Clustering-based methods is another used category.
Initially, in a multidimensional space, the abnormal
data is different from normal data. A clustering-based
method, or a mapping tool, that projects properly
the data from multidimensional space into a lower di-
mensional space permits to distinguish the abnormal
data from normal data based on the data distribution.
Therefore, with this methods category, it is possible
to visualize the data in a two-dimensional space and
track signs of failure. Several methods have been pro-
posed and proved to be successful, such as t-SNE [24]
and UMAP [25]. toor Inc. proposed toorPIA [26], a
novel clustering-based method. toorPIA uses hierar-
chical clustering and is an already existing commer-
cial product [26]. This method has been showing good
classification capabilities and high-speed processing in
addition to be easy-to-use.

Our proposed analysis method is based on a core
analysis followed by the use of a mapping tool. Among
the existing mapping tools, we chose to use toorPIA
for previously showing valid results on sound data [11].
The core analysis relies on the estimation of the corre-
lation between data instances the bare sound or vibra-
tion frequency-domain data to monitor the machine
condition rather than complex models or selected sta-
tistical features. Therefore, our proposal maintains the
simplicity of the process while achieving accurate di-
agnosis and predictions.

Outline of the proposed failure predictive
solution
We are proposing an IoT-based machinery failure pre-
dictive solution as a CBM predictive maintenance
technique. Hence, our solution consists of the three
phases [1]: data acquisition, data processing and deci-
sion making. In a prior work [11], we presented the sys-
tem architecture of our solution. Our proposal has the
common IoT-based system architecture as described
in Fig. 1. The data is collected from one or multi-
ple sensor nodes and transmitted to a cloud storage
via a wireless network. Further data processing is then
performed on the sever using our proposed Big Data
Analysis method for diagnosis and prediction.

The proposed big data analysis method
We are proposing a big-data-based analysis method
that would be applied on the retrieved sensor data.
Our method consists of a pre-processing and a map-
ping phase.

The pre-processing phase consists of generating data
vectors from the time-domain data, extracting the fre-
quency contents of those vectors using Fast Fourier
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Sensor-Node Wireless Network Server

Figure 1 System architecture of the proposed solution

Transform (FFT) and finally, from the spectra data,
generating a similarity (distance) matrix to be the in-
put of the mapping phase.

The mapping phase consists in visualizing the mul-
tidimensional data in a two-dimensional space. As we
mentioned in section Related works, several methods
have been proposed and implemented such as t-SNE
[24], UMAP [25] and toorPIA [26]. Mapping methods
tend to preserve the multidimensional distances to a
maximum degree. In the present work, we chose to use
toorPIA as a mapping tool. For toorPIA, in a mul-
tidimensional space, correlation acts as gravity and
brings together the data of high similarity into clus-
ters. Therefore, using the similarity matrix, toorPIA
assigns a single (xi,xj) coordinates pair for each data
vector Fi expressing the relative position of the data
vectors in a 2D map. The process flow of our analysis
method is illustrated by Fig. 2.

Segmentation

Transform to frequency 
domain

Correlation

Mapping

Figure 2 Process flow of our analysis scheme

The proposed failure predictive scheme
The 2D map generated by toorPIA can be used for
early detection of failure signs of the machine based
on the prediction scheme detailed in Fig. 3.

First, we generate a 2D map from the accumulated
data that we refer to as a reference map. Since in most
cases, machines are designed to run in a healthy con-
dition for a long period of time, the reference map is
generally consisting of a normal state single cluster or
several clusters. Therefore, from day 1 data, we can
form a reference map. Any data acquired later can be
mapped into the reference map.

Then, from the position of this newly plotted data
point in the reference map we can know the present
condition of the machine. If the machine is maintain-
ing a normal operating condition, the newly plotted
data points will fall into the normal condition cluster.
However, if the machine started to gradually deterio-
rate, the newly data points will be plotted on the edge
then move outside of the normal condition cluster. In
the latter scenario, if the machine is in a serious pre-
failure condition, the newly plotted data will shift en-
tirely from the normal condition cluster and will form a
new well-defined cluster. Then a maintenance would be
urgently required. If the newly plotted data has shifted
but then came back into the normal condition cluster,
the machine might have had some disturbances but
there is no risk of failure. Therefore, there is no need
to have enormous maintenance actions.

We believe that this prediction scheme is able to
track the slight change in the data as the machine
drifts from a normal operating condition to degrada-
tion. We can detect whether or not a failure is about
to happen.

Moreover, the reference map can expand with all
newly acquired data according to the machine condi-
tion. New clusters specific to each type of failure will
appear gradually. Thus, instead of having a complex
training prior detection, the intelligence of the method
grows daily with the growth of the map.

In this paper, we are focusing on the application of
the proposed big data analysis scheme as predictive
tool on the already available dataset provided by [20].

Application of the predictive scheme on
the valve data of the MIMII dataset
In the current work, we selected from [20] the data of
valve 00, on channel 1 and with Signal to Noise Ra-
tio (SNR) equal to 0dB. The dataset comes initially in
form of 10-second-long segments rather than continu-
ous time-domain data. We have 991 normal data seg-
ments and 119 abnormal data segments. As described
in the previous section, the first step in our predictive
scheme is to form a reference map and then add the
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Figure 3 The failure predictive scheme

test data on it. We chose to use the normal data only
as reference data and the abnormal data as test data.

Analysis of normal data and generation of the reference
map
Analysis
We start by analyzing the normal data only to form the
reference map. We kept the vectors length equal to 10
s. This would permit us to cover the fluctuations in the
valve sound data and the non-stationary nature of the
signals mentioned by the authors in [13]. By having a
sampling rate of 16 kHz, a vector having 10 seconds as
window length would result in a window size of 16.104.
This window size is then not a power of 2 and doesn’t
satisfy the FFT requirement for symmetry. Thus, we
chose to complete each vector by 102144 dummy data
to reach a window size equal to 218. Each vector is
then represented by (1). By adding dummy data, we
obtained vector data covering 10-seconds length valve
operation and of a window size equal to 218.

Ai = (ai,1, ai,2, . . . , ai,n, di,n+1, di,n+2, , ..., di,m) (1)

Where:
• n: the original vector window size, 16.104

• m: the higher closest power of 2 to n, 218 = 262144
• ai,1, ai,2, . . . , ai,n: the original vector data cover-

ing 10-seconds valve operation

• di,n+1, di,n+2, . . . , di,m: the dummy data where
di,j = 0 ∀j ∈ [n + 1,m]

Next, we applied Hanning window and FFT on the
obtained vectors to generate the frequency-domain
data. Fig. 4 presents the average spectrum from the
total of the normal data. The obtained spectrum is
noisy and shows fluctuations. The frequency resolu-
tion of a spectrum is the hop between two frequency
components. In this present case, with a sampling rate
of 16 kHz and spectrum size of 217, the frequency res-
olution of our spectra is 0.06 Hz. We assume that such
value is an extremely high frequency resolution and
would decrease the accuracy of the evaluation of the
correlation between the spectra. Therefore, we tuned
the frequency resolution to 15 Hz. Since, the original
spectrum size is 217, we then averaged every 256 con-
secutive frequency components to obtain a smoother
spectrum. Thus, we obtained spectra of size of 29 but
still cover the 10 s valve operational data.

Fianlly, we ran the correlation analysis on the ob-
tained spectra. Then by using toorPIA, we obtained
the reference map as shown by Fig. 5.

Figure 4 The average spectrum from all the normal
segments spectrums

Results and discussion

Fig. 5 shows that the normal data distributes in 2 adja-
cent dense clusters with the rest of the segments scat-
tered around. According to [13], the valves are solenoid
valves that are repeatedly opened and closed but with
different timing. The authors also highlighted that the
valve sound signals are non-stationary and in particu-
lar impulsive and sparse in time.

We inspected the time-domain contents of the differ-
ent areas on the reference map as shown in Fig. 6. We
could see that the valve had about 1-second long opera-
tional cycle consisting of: open/stay opened/close/stay
closed. In some of the data segments, the valve had
9 full cycles (Fig. 6.a) while in other data segments
the valve had fewer open/stay opened/close/stay closed
events (Fig. 6.d), therefore, fewer operational cycles.
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Figure 5 The reference map formed by normal data only

Moreover, at several instances and even in normal con-
dition, the valve showed an alternation of amplification
then attenuation of the amplitude of the sound signal
(Fig. 6.b. and Fig. 6.c).

Therefore, the distribution of the normal data on the
reference map as witnessed in Fig. 5 could be explained
by the difference in the operational modes of the valve.

Adding abnormal data into the reference map

Analysis

In the current work, we developed a plotting algorithm
that places the abnormal data on the reference map
according to the multidimensional distance to the nor-
mal data. In our proposed prediction scheme, the ref-
erence map does not change by the newly plotted data.
Hence, the position of the new data will permit us to
track and detect any abnormalities.

First, we start by generating the test data vectors
from the abnormal segments using the same parame-
ters used for the reference data vectors regarding win-
dow length and frequency resolution. The vectors are
then 10-seconds long and each spectrum has 29 fre-
quency components as dimensions and 15 Hz as a spec-
trum frequency resolution. Next, for each test vector,
we evaluate the multidimensional distances to the ref-
erence data vectors and then we use our developed
plotting algorithm to project the data vector from
the multidimensional space into the two-dimensional
space. Fig. 7 shows all the abnormal data placed on
the reference map.

a

b

c

d

Figure 6 The structure of the reference map a Segment 30:
8 full-cycles with stable amplitude; b Segment 111: 9
full-cycles with amplification then attenuation of the
amplitude; c Segment 176: 8 full-cycles with amplification
then attenuation of the amplitude; d Segment 505: only 3
full-cycles with somewhat stable amplitude

Results and discussion
The abnormal data was plotted on the edge of the
reference map. Only a small portion of the data over-
lapped with some of the normal data at the edge of
the reference map. On the other hand, the rest of the
data was plotted outside the reference map. Moreover,
the abnormal data distributed over 3 main compact
clusters as shown in Fig. 7.

In Fig. 8, we present the frequency contents of the
3 abnormal clusters and compared them to each other
and to the frequency contents of the normal data. For
this purpose, we generated the average spectrum from
all the normal data spectra to obtain a general idea of
the frequency distribution of the sound data when the
valve is having a normal operation. Additionally, we
picked randomly a segment from each of the 3 abnor-
mal clusters and observed the spectrum.

We found that the normal data spectrum showed
higher amplitudes in frequency-domain (Fig. 8.a) com-
pared to the abnormal data (Fig. 8.b, Fig. 8.c and Fig.
8.d). Moreover, from Fig. 8.b, Fig. 8.c and Fig. 8.d, we
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Figure 7 The abnormal data as newly plotted test data on
the reference map

can see that the 3 spectra from the 3 abnormal clusters
showed differences in the frequency distribution. Two
hypotheses could explain such differences between the
abnormal spectra and thus the distribution of abnor-
mal data over 3 clusters on the reference map:

• Hypothesis 1: the 3 clusters correspond to 3 types
of contamination

• Hypothesis 2: same as the normal data, the 3 clus-
ters correspond to different operational routines of
the valve, means to different number of open/stay
opened/close/stay closed cycles.

In the current stage, we still cannot confirm which
of the 2 hypotheses dominated the structure of the ab-
normal data clusters. However, if a further attribute
information is provided by the authors of the dataset,
we could firmly confirm which of the hypotheses dom-
inated the distribution of the abnormal data on the
map.

Analysis of the valve normal and abnormal
data combined
In this section, similarly to the previous section, from
the MIMII dataset [20], we used the data of valve 00,
on channel 1 and with SNR equal to 0dB. However,
in this section, we are analyzing the total data (nor-
mal and abnormal) to inspect how the data actually
distribute.

Analysis
We start by forming the data vectors from the nor-
mal data segments and the abnormal segments using

a

b

d

c

Figure 8 Distribution of the abnormal data on the reference
map a The average spectrum from all normal data spectra; b
Spectrum of segment 50; c Spectrum of segment 34; d
Spectrum of segment 5

the same parameters used in the previous section. The
vectors are then 10-seconds long and each spectrum
has 29 frequency components as dimensions and 15 Hz
as a spectrum frequency resolution. Then, we ran our
correlation analysis on the total data (normal and ab-
normal) to estimate the multidimensional distances.
Finally, we used toorPIA to obtain the 2D map shown
in Fig. 9.

Results and discussion
From Fig. 9, we can see that there was a full dis-
tinction between the normal data and the abnormal
data. The distribution of the normal data when an-
alyzed with the abnormal data changed compared to
when only the normal data was analyzed. On the other
hand, abnormal data distributed mainly on 2 clusters.
This separation of the 2 sets of abnormal data can
be explained by the difference in the contamination
modes. Alternatively, the difference between the two
clusters can be explained by the number of open/stay
opened/close/stay closed operations, same as for the
normal data distribution. In the present work, we are
still not able to confirm that we can effectively dif-
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Figure 9 Visualization of the normal data and abnormal
data analyzed and mapped together

ferentiate between the types of contamination. How-
ever, we assume that since the valve operation would
be affected differently by different contamination, the
frequency characteristics of valve operation should be
different between the different contamination modes
and thus, data would be plotted in different way on
reference map.

By comparing the results of the reference map
scheme obtained in the previous section to the results
of mapping all of the data together, we found that, in
the former case, some of the abnormal data overlapped
with the normal data, while in the latter case, there
was no overlapping between them. This can be ex-
plained by the fact that in multidimensional space nor-
mal and abnormal data do not overlap to each other.
In data mapping phase, in other words, in dimension
reduction phase, we tend to preserve the distance be-
tween the data to a maximum degree. Therefore, on
the map, when mapping all of the data together, nor-
mal data would be well separated from the abnormal
data. However, in the reference map scheme, we start
by first mapping the normal data to form a reference
map and then, separately, we map the abnormal data
on the reference map. As a result, the newly mapped
data would distribute in wider area and some the of
data would overlap with normal data.

Therefore, to further improve the accuracy of the
reference map scheme, we can periodically update the
reference map. In other words, we generate a new ref-
erence map that besides the normal data, includes the
abnormal data once the associated abnormality mode

happened in the actual machine operation. This would
expand the reference map to include the normal data
and the abnormal data already obtained. Therefore,
our failure detection scheme grows to be more intel-
ligent in real circumstances. This feature is called as
“Progressive Intelligence” as proposed in our previous
work [11].

Discussion
In the current work, by forming a reference map from
normal data and plotting new data into it, we could
successfully place abnormal data at the edge as well
as out of the normal data area. Therefore, using the
proposed prediction scheme, we proved that we can
track and detect the signs of failures.

Consequently, according to how the abnormal data
distributed on the result reference map, we are propos-
ing the following method to automatically detect the
signs of failure from newly acquired data. From the
already existing reference map, we start by defining
the normal region. The abnormal data would move
according to the degradation state. Then, as degrada-
tion progresses, we can define the center of gravity of
the newly plotted abnormal data that moved out from
the normal region. We define a threshold by how far
this center of gravity is from the normal region.

In our future work, we will implement and test this
method to design a filter on a real-world like scenario.
In such situation, the reference map would extend
as described in section Analysis of the valve normal
and abnormal data combined and different degrada-
tion modes could be detected accordingly.

In the present work, we used an initial plotting algo-
rithm to add the abnormal data into the reference map
based on the multidimensional distances. However, a
more sophisticated method is being developed within
the features of toorPIA. In our future work, we will
use this new feature to improve the accuracy of the
projection of the test (abnormal) data from multidi-
mensional space to the reference map.

Additionally, we planning to tune certain key param-
eters of analysis to study their effect on the output of
the analysis scheme.

Conclusions
The present work is an application and a validation of
our proposal for failure-predictive solution on MIMII
dataset [20] as a real-world like dataset. Based on the
obtained results we can conclude that:
1 Despite the complexity and the limited knowledge

of the target monitored machine, here the valve,
we successfully differentiated between normal and
abnormal data without any modification of the
core of our analysis scheme. Hence, our hypothesis
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in [11], that the core analysis can remain effective
for failure detection using vibration or sound data
for different systems has been validated.

2 Using our predictive scheme, detection of signs
of failure and abnormal behavior of machines is
possible from day 1 and without prior knowledge
of the data.

3 We couldn’t strictly confirm that we distinguished
between the modes of the valve contaminations.
However, we assume that our detection scheme
would differentiate not only the contamination
modes but also operational variation if further at-
tribute info would be available from the author of
the dataset to validate our results.

In the present work, we applied our proposed failure-
predictive scheme on a sound data of valve. However,
our proposal can be applied to other types of IoT data
such as vibration, flow fluctuation, electric current,
temperature, chemical contents, etc...
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