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Abstract

This paper is dedicated to validating the scalability and generalization of our previously proposed “machinery
failure predictive scheme”. Our aim is to have a generic core technology to provide a solution applicable in
industry that is low-cost and low-intrusive.

Background: In our previous works, we proposed an unsupervised predictive scheme combining the use of full
spectrum of vibration/audio data and data visualization techniques. We then proposed a real time data tracker
(RTDT) and we applied our proposal on vibration data of bearings. In this paper, we are applying our
predictive scheme on a facility (composite system) rather than a specific mechanical component (singular
system). We chose to apply our proposal on the MIMII dataset as it was used in task 2 of the DCASE 2020
challenge for the detection of anomalous sounds given normal data only.

Methodology: We adopted two approaches: (1) the same scheme used in our application on bearing vibration
data and (2) with a slightly modified approach where we apply a high pass filter (HPF) on the audio data to
reduce the effect of the background noise. To effectively evaluate the accuracy of our scheme in detecting and
recognizing anomalous sounds, we are comparing our results to the performance of the baseline system
proposed by the organizers of the challenge as well as the results from the 40 participating teams. For the
evaluation, we used the same metrics used in the challenge: the area under the receiver operation characteristic
(ROC) curve (AUC) and the partial AUC (pAUC).

Results: We obtained satisfactory values of AUC and pAUC compared to the related works. We also
outperformed the baseline system in 13 out of 16 machines in terms of AUC and 15 out of 16 machines in
terms of pAUC.

Merits: Compared to the current related works, our “machinery failure predictive scheme” is featured by
0-training, and no complex preprocessing or de-noising techniques. Furthermore, our solution based on our
scheme is provided as a white box, users will have the following merits: (1) our solution can be in operation
right after a normal data set is obtained usually in a few days and (2) our solution can be built into
conventional operation and maintenance systems without advanced background in artificial intelligence or data
science.

Keywords: unsupervised predictive scheme; vibration/audio data; full spectrum; data visualization; generic;
scalable; 0-training; white box

Introduction
A fault that we overlook and fail to detect can cost
a life. Maintenance techniques have been developed
since the birth of the first machines, to detect and rec-
ognize a faulty behavior and take the right action to
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avoid a catastrophe. Today’s most common direction
in maintenance is predictive maintenance, becoming
one of the pillars of Industry 4.0 and permitting us
to be few steps ahead of the fault. Condition Based
Monitoring (CBM) is the most known predictive tech-
nique, that can be today translated in an IoT-based
predictive solution.

For anomaly detection, recognition and prediction,
literature is rich of approaches combining the use of
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vibration or/and audio as sensor data and the use
of Artificial Intelligence (AI) based methods for data
processing and decision making. On vibration data,
we can cite as example, Windau and Itti [1] using
Support Vector Machine (SVM) and Neural Network
(NN), Kankar et al. [2] using Artificial Neural Net-
work (ANN) and SVM, Zhang et al. [3] using ANN
and Galloway et al. [4] using Auto Encoder (AE) and
SVM. On audio data, we can cite as example, Koizumi
et al. [5] using Gaussian Mixture Model (GMM) and
Variational Auto Encoder (VAE), Kawaguchi et Endo
[6] using Long-Short-Term Memory (LSTM) autoen-
coder, Oh and Yun [7] and Koizumi et al. [8] using
AE.

However, it remains challenging for the AI-based
techniques to be applied for machinery failure pre-
diction despite achieving outstanding results in other
fields of application such as speech recognition and
computer vision. Supervised methods suffer from the
lack of training data and the absence of real failure
data since the machines are initially designed for a
long lifetime. Unsupervised methods on the other hand
achieved good results using normal data only for train-
ing the classifiers and models to recognize and detect
abnormal data. But these methods, relying on a spe-
cific set of extracted features, can rarely be generic and
scalable and has to be trained to specific machines and
sensor data to achieve highly accurate results. More-
over, there is still a big gap between industry and AI
despite the popularity of these approaches. It is usu-
ally required to have data science background to be
able to deploy, understand and effectively interpret the
obtained results. In [9], Jardine et al. mentioned that
there are the two main difficulties with neural net-
works: the difficulty to obtain physical explanation of
the trained model and the difficulty of the training
process. For some factories, it is still considered intru-
sive and costly to hire data scientists and to implement
these solutions in the first place.

Therefore, we are aiming for a scheme that is generic
and scalable to provide industry with a solution that is
low-cost and low-intrusive. In other words, a solution
that doesn’t need to be re-designed or re-developed
for each machine/sensor type and that can be used
with the existing monitoring system already installed
in the factory/plant. We are also aiming to provide a
solution that can be fully comprehended even without
an advanced background in data science.

In this context, we proposed a novel approach for
machinery failure diagnosis and prediction featured
by 0-training and by quick start after installation.
In our previous work [10] we proposed the backbone
of our analysis scheme. We use the full spectrum
data, without any specific feature extraction, com-
bined with visualization techniques such as toorPIA

[11] and t-SNE [12]. The visualization technique maps
the highly dimensional data vectors (spectra) in a 2D
map according to the machine behavior. The philoso-
phy of our proposal is to ensure the simplicity of the
process with less possibility to overlook any impor-
tant information and to provide a human-friendly and
human-understandable output. Additionally, by hav-
ing 0-training, the solution would adapt to any type
of machine without the need to re-develop or re-design
it.

In [10], we were able to validate the ability of our
analysis scheme to recognize abnormal data from nor-
mal data using sound data from a miniature toy motor
where we mimicked failure states. However, our main
goal is not a solution that only detects and recognizes
anomalous data from normal data but further a real
time data tracker that can track and visualize the signs
of degradation to anticipate the anomalies. Therefore,
in [13], we extended our proposal to be applied as a
predictive tool and we proposed the Real Time Data
Tracker (RTDT). The RTDT consists of first, gener-
ating a reference map (RM) from the early acquired
data (the reference data), supposedly to be the healthy
(normal) data. To generate the RM, we use the same
analysis scheme as proposed in [10]. Then, as we mon-
itor the target machine/component, we acquire new
data and using a geometry-based algorithm, we add
these data (the monitoring data), into the RM in real
time. By checking the movement of the newly added
data on the RM, we track and asses the machine con-
dition. In [13], we were able to validate the RTDT on a
run-to-failure test vibration dataset on bearings, pro-
vided by the Intelligent Maintenance Systems (IMS),
University of Cincinnati [14, 15] .

In this paper we are not proposing a novel analysis
scheme but instead verifying the scalability and gen-
eralization of our machine failure predictive scheme.
Thus, in this work we are extending further our field
of application to a composite system rather than a
singular system as in [13]. We chose to apply our pre-
dictive scheme on valves, pumps, fans and slide-rails
as composite systems from the MIMII dataset [16].
Each machine type in the MIMII dataset has different
operational mode [17] rather than rotating at a con-
stant speed as the bearings used in [13]. This made
the abnormal data more challenging to be detected
and recognized from the normal data compared to our
work in [13]. Additionally, in the MIMII dataset, the
monitoring data is audio data recorded by a contact-
less microphone and mixed with a background noise
rather than vibration data recorded by an accelerom-
eter directly attached to the shaft where the bearings
were mounted. This made the sensor signal more com-
plex to find the key information than what we used in
[13].
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Despite these changes in the target machines and the
monitoring data, we are keeping the core technology
without any fundamental changes to test (1) how scal-
able our scheme is by validating on composite system
and (2) how generic our scheme is by validating on
several machine types (valves, pumps, fans and slide-
rails) and on different sensor data (audio data rather
than vibration data). We are presenting our results
from two adopted approaches:

• Approach 1: the use of the scheme exactly as in
[13].

• Approach 2: the use of a High Pass Filter (HPF)
on the input audio data to improve the signal and
reduce the effect of the background noise.

To effectively evaluate the accuracy of detection our
scheme, we are comparing our results to the related
works on the MIMII dataset. The MIMII dataset was
used in task 2 from the IEEE AASP Challenge on
Detection and Classification for Acoustic Scenes and
Events, DCASE 2020. This task is known as the Unsu-
pervised Detection of Anomalous Sounds for Machine
Condition Monitoring. The task rule was to use the
normal data only as training data and do not include
any abnormal data instance in the training phase.
Two metrics were used for ranking the participating
teams: the area under receiver operating characteristic
(ROC) curve AUC and the partial AUC, pAUC [18].
We then calculated the AUC and pAUC from our re-
sults to quantitively evaluate our results and position
our scheme among the existing works.

Our achievements in this paper are as follow: (1)
from the viewpoint of the solution generalization, our
contribution is that not only our method can be used
on both complex and singular systems, but it can
be also used with different types of machines and
with different types of sensor data. We used the same
anomaly score formula and same analysis method for
all the 4 machine types and all the machine IDs. (2)
As a comparison to the results of task 2 of DECASE
2020 in terms of accuracy of detection of anomalous
sound data, we obtained satisfactory values of AUC
and pAUC compared to the related works. We outper-
formed the baseline system in 13 out of 16 machines
in terms of AUC and 15 out of 16 machines in terms
of pAUC. Additionally, it should be mentioned that
contrarily to the current related works, our scheme
is 0-training, no complex preprocessing nor de-noising
techniques. This makes our solution reproducible and
generic. The solution is a white box, simple to under-
stand and use by operators, even with the absence of
data science background. This permits more effective
interpretation of the results leading to a better predic-
tion, less false alerts and more effective maintenance.

Moreover, our solution is originally designed not only
for detection of anomalous events but also to track the

degradation before reaching the anomalous stage. We
were able to prove this specific feature in our work on
the IMS dataset [13] since it was a run-to-failure test
data. However, in the MIMII dataset, the anomalies
were deliberately caused in the machines and therefore,
we only applied our scheme to detect anomalous sound
data from normal data rather than a real-time data
tracker.

The rest of the paper will start by brief recapitu-
lation of the core technology and methodology of our
predictive scheme. We are then explaining how we used
the MIMII dataset to validate our scheme. Next, we are
detailing our analysis steps while in the section that
follows, we are showing our results. In the next sec-
tion we are presenting the evaluation of the obtained
results. In a later section, we are discussing further the
added value of the work presented in this paper com-
pared with our previous works. We finally conclude our
work and present our future works.

Methodology
In [10] we presented the backbone of our solution for
machinery failure detection and prediction. We then
proposed the RTDT as a real time data tracker in [13].
Our proposal is an unsupervised predictive method
consisting of two main steps. (1) Generation of the
reference map RM from the early acquired data (ref-
erence data) and supposed to be the healthy (normal)
data. Then (2) adding the newly acquired data (the
monitoring data) in real time into the RM for track-
ing and assessment of the machine condition. Fig.1
illustrates the process flow of the proposed predictive
scheme.

In the next sections, we will use the following nota-
tions:

• We refer to a vector U from the origin in the multi-
dimensional space by UUU , where UUU ∈ <n

• We refer to a vector U from the origin in the two-
dimensional plane by uuu, where uuu ∈ <2

• We refer to the vector formed by a point A and a

point B in the multi-dimensional space by
−−→
AB

• We refer to the vector formed by a point A and a

point B in the two-dimensional plane by
−→
ab

• We refer to the inner product between a vector U
and a vector V by 〈UUU,VVV 〉

Generation of the RM
Preprocessing phase: on the reference data, we con-
vert the raw data into reference data vectors.

We start by dividing the time-domain data into seg-
ments. Next, on each segment we apply a window func-
tion, the Hanning window, and we then apply the Fast
Fourier Transform (FFT). We only consider the com-
ponents of the positive frequencies. The obtained spec-
trum from each data segment is a multidimensional
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data vector VVV . In certain cases where the sampling
rate is high, we smoothen the spectrum to reduce the
white noise effect.

In our scheme, we do not extract any specific feature
but instead we consider the whole frequency contents
as a high dimensional input vector to minimize the
possibility of overlooking any important information
within the spectrum [13].

The preprocessing phase results in transforming the
raw reference data to a set of high dimensional refer-
ence data vectors {RiRiRi}Nr

1 where RiRiRi ∈ <n, Nr is the
number of reference data vectors and n is the number
of dimensions, i.e. frequency components of the spec-
trum.

Similarity quantification: on the reference data
vectors, we quantify the similarity between the data
vectors. We use the distance in the multidimensional
space as shown by (1) to quantify the similarity be-
tween a data vector RiRiRi ∈ <n and a data vector
RjRjRj ∈ <n.

dij =
√
〈RiRiRi,RiRiRi〉+ 〈RjRjRj ,RjRjRj〉 − 2〈RiRiRi,RjRjRj〉 (1)

Where:
• RiRiRi,RjRjRj ∈ <n, RiRiRi = (ri1, ri2, · · · , rin), RjRjRj =

(rj1, rj2, · · · , rjn) ∀i, j ∈ [1, Nr]
• 〈RiRiRi,RjRjRj〉 is the inner product of RiRiRi and RjRjRj

From the distance values between all the reference
data vectors, we form a similarity matrix S. S is an n×
N matrix and can be simplified to an upper triangular
matrix given the following characteristics: (a) dij = dji
and (b) dii = 0. The similarity matrix S has the format
shown by (2).

S =


0 d12 d13 · · · d1n
0 0 d13 · · · d2n
0 0 0 · · · d2n
...

...
...

. . .
...

0 0 0 · · · 0

 (2)

Data visualization: based on the obtained simi-
larity matrix S, the high dimensional reference data
vectors are mapped in a two-dimensional plane us-
ing a dimension reduction technique such as toorPIA
[11] and t-SNE [12]. Dimensional reduction techniques
tend to translate the similarity seen in the multidimen-
sional space to clusters in the two-dimensional plane
while preserving as much of the significant structure
of the high-dimensional data as possible in the low-
dimensional map [12]. The differences among the ex-
isting methods relies in the definition of the significant

structure to preserve. In [13], we discuss further the dif-
ferences between the dimensional reduction techniques
and the reason for choosing toorPIA and t-SNE for this
field of application.

Therefore, for eachRiRiRi ∈ <n we then assign a ririri ∈ <2

where ririri = (rix, riy). We then obtain {ririri}Nr

1 , the set of
the Nr reference data vectors in the two-dimensional
plane forming the RM.

The RM, formed by the early acquired data, would
consist of the normal (safe) zone.

Adding the new data into the RM
Preprocessing phase: on each newly acquired data
(test data), we start by generating our data vectors
from the raw data following the same exact prepro-
cessing phase as in the generation of the RM.

Data plotting: as we mentioned in [13], there are
many approaches that can be implemented to plot the
new data into the RM. We are employing a geometry-
based algorithm as follow:

• We consider G, the center of gravity of the RM,
as origin for our plotting algorithm.

• For each X of the data vectors generated by the
preprocessing phase from the newly acquired data
(test data):

1 We define ZZZ ∈ <n as the closest reference
data to XXX ∈ <N by distance in the multidi-
mensional space as defined by 1.

2 We define YYY ∈ <n as the closest reference
data toXXX ∈ <n by angle from G, i.e. forming
the smallest angle, θ, with X from G.

3 Using the angle, θ obtained from Y and the
reduction ratio r obtained from Z, we obtain
xxx ∈ <2, x = (xx, xy). We then place the
newly acquired data X into the RM as shown
in Fig.2.

Decision making
If the machine is still healthy, the newly acquired data
will fall into the safe zone. However, if the machine
is degrading, the data points move out of the normal
(safe) zone. This permits to track the machine condi-
tion by visualization. Additionally, we are quantitively
tracking the machine condition by calculating a warn-
ing factor, ρ, from the two-dimensional position of the
newly plotted data. From xxx,zzz,ggg ∈ <2 the 2D position
of each newly acquired data X, the 2D position of Z,
the closest reference data to XXX ∈ <n by distance in
the multidimensional space and the 2D position of G,
the gravity center of the RM, we define ρ(X) as given
by (3).

ρ(X) =
‖−→gx‖
‖−→gz‖

(3)
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The warning factor ρ(X) has the following charac-
teristic: ρ(X) = 1 + ε where:

• ε would take a large positive value when the data
vector XXX corresponds to anomalous data.

• ε would take a small or negative value, leading
to a value of ρ almost equal to 1 when the data
vector XXX corresponds to a normal data.

Therefore, if ρ(X) takes a large value, the machine
condition is abnormal. Else if ρ(X) takes a small value
(almost 1), the machine is normal. In terms of tracking
the machine condition, if ρ(X) is increasing, the ma-
chine is degrading and will have anomaly. Else if ρ(X)
is maintained around 1, the machine is maintaining a
healthy condition.

Experimental material
In this paper, we chose to apply our proposed predic-
tive scheme on the MIMII dataset [17] but as it was
used in the task 2 of the DCASE 2020 challenge [19].
This task is known as the Unsupervised Detection of
Anomalous Sounds for Machine Condition Monitor-
ing. The aim of the task is to have solutions that are
not limited to simple classification but instead are able
to have a “prompt detection” of degradation by ob-
serving the machine sounds. Hence, the task rule was
to use the normal data only as training data and do
not include any abnormal data instance in the training
phase. The task used two datasets: the MIMII dataset
[17] and the ToyADMOS dataset [20]. However, in this
work, we chose to focus on the MIMII dataset, since it
consists of the sound data of real machines with back-
ground environment conditions. By using this dataset,
we can also have a wide range of related works results
to compare our results to and to effectively verify the
validity of our proposal.

Data characteristics
The MIMII dataset in task 2 of the DECASE 2020
challenge consists of audio data that had been recorded
from 4 types of machines: valve, pump, fan and slide-
rail. Each machine type had 4 monitored machines.
Each of the machine types had different operational
modes [17]. All data were provided as 10-sec-long seg-
ments and down-sampled to 16 kHz [19]. Originally,
the data were acquired on an 8-channel microphone
[17] but for the sake of the simplicity in the task, only
channel 1 data were considered [19]. Additionally, in
the set considered in the task 2 in the DECASE 2020
challenge, the audio data consist of both, the moni-
tored machine sound as well as the background noise
[19]. Further details on the full MIMII dataset can be
found in [17] and on the dataset as used in the task 2
of DECASE 2020 challenge in [19].

Data structure
The MIMII dataset as used in task 2 of DECASE 2020
challenge was presented in the form of 3 sets:

• Development dataset:
– Training set: as training data, only normal

data, labeled, intended to be used to train
classifiers and models for learning-based and
training-based methods.

– Test set: as test data, normal and anomaly
data, labeled, intended to be used to test the
trained classifiers and models. This set is not
allowed to be used in the training phase by
rule of the organizers.

• Evaluation dataset: as test data, normal and
anomaly data, not labeled.

• Additional training dataset: as training data, can
be used for training however this set was open
later in the challenge.

In the current work, we are focusing on the devel-
opment dataset and the data is used as described in
Table 1 and as follow, for each target machine:

• The data from the training set are used to make
the reference map, RM. As we detailed in the pre-
vious section, no training is performed despite the
name of the set. Therefore, we refer to this data
as the reference data.

• The data from the test set is used as test data
and is to be plotted into the RM. We refer to this
data as the test data.

Moreover, in the development dataset, we have the
data of the 4 types of machines: valve, pump, fan and
slide-rail (slider). And for every machine type, we have
4 machine IDs: 00, 02, 04 and 06. Then, in total, we are
testing our predictive scheme on 16 machines. There-
fore, we can verify ability to recognize the anomalous
sounds by having normal data only as reference and
over different machine types. Consequently, we can
verify the scalability and generalization of our scheme.

Analysis
We are analyzing each machine type and each machine
ID. Therefore, the following analysis process has been
conducted over the 16 analysis cases.

Preprocessing phase (vectors generation)
On both, the reference data and the test data from
the development set, we generate the data vectors as
follow:
1 We consider each file (audio clip) as a segment.

Therefore, a segment was 10-sec-long and con-
tained 220500 sample audio data as shown in
Fig.3.a.

2 We add dummy data to reach a segment length
equal to 218(= 262144) i.e. we add 41644 dummy
data, each equal to 0.
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3 We apply Hanning window.
4 We perform the FFT: the original spectrum size

is 131072 and the original frequency resolution
of the spectrum is equal to 0.08 Hz as shown in
Fig.3.b.

5 The original frequency resolution of the spectrum
being high, we smoothen the spectrum by averag-
ing every 256 consecutive frequency components.
This also reduces the white noise effect. We ob-
tain a spectrum of size down to 512 with an aug-
mented frequency resolution of 19.58 Hz as shown
in Fig.3.c.

6 We crop the spectrum to 8 kHZ since the origi-
nal signal has been down sampled to 16 kHz and
the original spectrum was found equal to 0 after 8
kHz. For each data vector, the number of dimen-
sions became equal to 372.

The preprocessing phase resulted then in two sets of
multidimensional data vectors:
1 {RiRiRi}Nr

1 where RiRiRi ∈ <372, Nr is the number of
reference data vectors.

2 {XiXiXi}Nx

1 where XiXiXi ∈ <372, Nx is the number of
test data vectors.

We used the {RiRiRi}Nr

1 to generate the RM the we added

each of the {XiXiXi}Nx

1 into the RM. We evaluated the
anomaly score of each Xi as described in the Method-
ology section.

The parameters used in the preprocessing phase such
as the segment length, the spectrum size and the
frequency resolution, were kept the same among all
the machine types and IDs to verify how general our
scheme can be.

RM generation
On the reference data vectors we had the following
steps:

Similarity quantification: to define the similar-
ity between two data vectors, we evaluated the dis-
tance in the multi-dimensional space as given by (1).
In this work, we are considering the data vectors in 2
approaches:

• Approach 1, FFR approachFFR approachFFR approach (Full Frequency
Range approach): we used the full spectrum
range, 0 ∼ 8 kHz. We then had 372 dimensions,
and each audio clip was considered as a data vec-
tor RiRiRi ∈ <372.

• Approach 2, HPF approachHPF approachHPF approach (High Pass Filter
approach): we used a High Pass Filter (HPF) to
reduce the effect of the background noise. The
covered frequency range was 1.5 kHz ∼ 8 kHz.
We then had 302 dimensions and each audio clip
was considered as a data vector RiRiRi ∈ <302.

The structure of the adopted multi-dimensional space
for the RM of each of the 16 cases, in both approaches
is summarized by Table 2.

For each of the 16 cases, we generated the similarity
matrix S as given by (2).

Dimension reduction and visualization: we per-
formed the dimension reduction from <n to <2. In the
current work, we mapped the high-dimensional data
vectors in a two-dimensional plane using toorPIA as
a dimensional reduction technique. We then obtained
the RM. The position of the high-dimensional data
vectors in the RM was defined based on the multidi-
mensional distance between them given in the similar-
ity matrix S.

By the end of this step, we generated 16 RMs from
the dedicated reference set as described in Table 1
and using the exact same steps and same analysis pa-
rameters.

As we discussed in [13], t-SNE is an alternative di-
mension reduction technique. However, in the current
work we chose toorPIA to maintain the core analysis
of the predictive scheme similar to our work in [13].

Adding the test data into the RM
On each of the 16 RMs, we added the corresponding
test set as described in Table 1 . For the 16 analysis
cases, we used the same geometry-based algorithm as
described in the Methodology section.

Anomaly score calculation
To quantitively describe the state of a test sound data
X, an anomaly score is calculated for X. By definition,
an anomaly score takes a large value when the input
signal seems to be anomalous, and vice versa [19].

In the MIMII dataset, the anomalies were deliber-
ately caused in the machines. Therefore, we are only
applying our scheme to detect and recognize anoma-
lous sound data from normal data rather than real-
time tracking of the machines condition. However, the
previously defined warning factor can be regarded as
an anomaly score. The same formula given by (3) can
be used to define the anomaly score ρ(X) for each test
data X. If ρ(X) takes a large value, the machine con-
dition is abnormal. Else if ρ(X) takes a small value
(almost 1), the machine is normal.

For every test data vector X, we then evaluated the
anomaly score ρ(X) using the formula in (3). The same
anomaly score formula was used for all the 16 analysis
cases.

Results
The RMs structure
The obtained RMs for all the 16 analysis cases using
the FFR approach are shown in Fig.4. The RMs for
all the machines presented somewhat a similar distri-
bution. The reference (normal) data distributed into
dense subclusters surrounded by scattered data. We
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then inspected the frequency contents of these areas
on the RM to understand the reason of such distribu-
tion.

In Fig.5, we are presenting the frequency contents of
the subclusters as well as the scattered points for valve
00, pump 00, fan 00 and slider 00 as examples of each
machine type. From the spectrum of the segments of
each area on the RMs, we can see that:

• The core area had smooth spectrum (Fig.5.v-
1, Fig.5.v-2, Fig.5.p-1, Fig.5.p-2, Fig.5.p-
3, Fig.5.f-1, Fig.5.f-2, Fig.5.f-3, Fig.5.s-1,
Fig.5.s-2 and Fig.5.s-3).

• The fringe area formed by:
– Spectra with peaks at around 1 kHz (Fig.5.v-

3, Fig.5.v-4, Fig.5.v-5, Fig.5.v-6, Fig.5.p-
4, Fig.5.p-5, Fig.5.p-6, Fig.5.f-4, Fig.5.f-
5, Fig.5.f-6, Fig.5.f-7, Fig.5.f-8, Fig.5.f-
9, Fig.5.f-10, Fig.5.s-4, Fig.5.s-5, Fig.5.s-
6, Fig.5.s-7 and Fig.5.s-8).

– Spectra with high amplitude over all the fre-
quency components (Fig.5.v-7, Fig.5.p-7,
Fig.5.f-11 and Fig.5.s-9).

Since the data was recorded with a background noise
(on purpose), these peaks can be related to the back-
ground noise effect. Moreover, the structure of the RM
is the same among the different types of machines.
Therefore, we cannot explain the subclusters by the
different operational mode of the machine at the nor-
mal status. Instead, it can be explained by the back-
ground noise since for all the 4 types of machine, the
sound data was recorded with the same background
noise.

These findings inspired us to apply an HPF on the
audio data, limiting the low frequencies to 1.5 kHz. We
can then reduce the effect of the background noise on
the results. The obtained RMs for all the 16 analysis
cases using the HPF approach are shown in Fig.6.
The maps became more homogeneous forming one
dense area with few data vectors scattered around and
having less complex structure. The background noise
effect, causing the normal data to be heterogenous, was
then decreased.

Decision making on the test data
We added the test data into the RMs generated by
both approaches, to compare their performances. From
the position of the newly plotted test data into the RM,
we calculated the anomaly score for each test data. The
distribution of the values of the anomaly scores, with
both FFR approach and HPF approach, is given in
Fig.7, Fig.8, Fig.9 and Fig.10, for all the 4 valve
IDs, all the 4 pump IDs, all the 4 fan IDs and all the
4 slide rail IDs, respectively.

For some machines, HPF approach was better than
the FFR approach in differentiating between the

anomaly scores of the normal data and the abnormal
data. In these cases, the high frequency region con-
tained valuable information to distinguish the anoma-
lies, for example the valve case in Fig.7. But for some
machines, only the low frequency range was significant
such as the fan case in Fig.9. Therefore, by filtering
the signal, we lost key information to detect anomalies
and the difference between the anomaly scores of the
abnormal data and normal data was decreased.

Evaluation
Background on the used metrics
To evaluate the performance of our predictive scheme,
we used the two metrics: the AUC and the pAUC.
The AUC refers to the area under the receiver oper-
ation characteristic (ROC) curve (AUC) and pAUC
refers to the partial AUC (pAUC). The ROC graph
has been known to be used to evaluate the perfor-
mance of a classifier. A classifier, mapping instance
data to prediction classes, produces true positives and
false positives. True positive corresponds to when the
instance is positive and predicted to be positive. False
positive means an instance that is negative but was
predicted to be positive. Accordingly, the true positive
rate (TPR) means the hit rate while the false positive
rate (FPR) means the false alerts rate. TPR and FPR
are given by (4) and (5), respectively. As a matter of
fact, the ROC space has its x-axis as the FPR and its
y-axis as TPR. Therefore, the ROC graph represents
the tradeoff between the hit rate and the false alerts
[18].

TPR =
positive instance predicted as poistive

total number of positives
(4)

FPR =
negative instance predicted as poistive

total number of negatives
(5)

A discrete classifier has as its output only as one class
label (normal or abnormal) and is presented by a point
in the ROC space having a unique (FPR, TPR) pair as
shown in Fig.11.a. On the other hand, a non-discrete
classifier, gives as output a score (anomaly score) ex-
pressing the degree to which an instance is a member
of a class [18] (rather than a yes or no decision as in the
discrete case). The anomaly scores are sorted and used
as score threshold. An instance is positive (abnormal)
if the score is higher than the threshold. Else, if the
score is lower than the threshold, the instance is con-
sidered negative (normal). We then compute the TPR
and FPR for every threshold. Therefore, a non-discrete
classifier is presented by an ROC curve. In Fig.11.b,
we are giving an example for such case.
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In the case of discrete classifier, to compare a classi-
fier C1 to a classifier C2, we compare their position in
the ROC space as shown in Fig.12.a. C1 is to north-
west of the curve from C2, therefore C1, having higher
TPR and lower FPR, is better than C2. In the case
of non-discrete classifier, we need to reduce the ROC
curve down to a single value, the AUC [18]. The AUC
takes then a value between 0.0 and 1.0 and thus, can
be expressed in percentage. AUC is considered as the
probability that a classifier will rank a randomly cho-
sen positive instance higher than a randomly chosen
negative instance [18]. Therefore, to compare a classi-
fier C1 to a classifier C2, we compare their AUC values
as shown in Fig.12.b. The AUC of C1 is higher than
the AUC of C2, therefore C1 is better than C2.

In the current case, and as used in task 2 of the DE-
CASE 2020 challenge [21], the anomaly scores of nor-
mal test samples are used as the threshold. According
to [19], the AUC is given by (6):

AUC =
1

N−N+

∑
1≤i≤N−

∑
1≤j≤N+

H(A(x+j )−A(x−i ))

(6)

Where:
• {x+j }

N+

j=1
and {x−i }

N−
i=1: the abnormal and nor-

mal test data vectors, respectively, and had been
sorted that their anomaly scores are in descending
order.

• A(x+j ) is the anomaly score of an abnormal test

data x+j .

• A(x−i ) is the anomaly score of a normal test data
x−i .

• H(x) =

{
1 if x > 0,

0 else.

• N+ and N−: the number of normal and abnormal
test data, respectively

The pAUC was additionally required for practical re-
quirements [19]. The pAUC by definition, is calculated
as the AUC over a low false-positive-rate (FPR) range
[0, p]. For a predictive solution, it is important to in-
crease the TPR under low FPR conditions to avoid
false alerts resulting in an unnecessary intervention.
The pAUC is given by (7), according to [19]:

pAUC

=
1

bpN−cN+

∑
1≤i≤bpN−c

∑
1≤j≤N+

H(A(x+j )−A(x−i ))

(7)

Where b.c is the flooring function and p is set to 0.1.

Our results metrics
To effectively compare the AUC and pAUC of our sys-
tem to the related works submitted to the task 2 of
DECASE 2020 challenge, we calculated our AUC and
pAUC from the obtained anomaly scores, using the
same implementation by sklearn [22] as used in the
baseline system [23] proposed by the organizers of the
challenge. We evaluated the AUC and pAUC for each
machine ID and each machine type and the values are
given in Table 3.

Using the values obtained for each machine ID, we
were able to compare our results to the baseline sys-
tem presented in [19] over the 16 machines individu-
ally. Fig.13 is a comparative figure between our re-
sults and the baseline system results in terms of AUC
and pAUC. In total, our approaches outperformed the
baseline system in 13 out of 16 machines in terms of
AUC and 15 out of 16 machines in terms of pAUC.
The FFR approach outperformed the baseline system
in 11 out of 16 machines in terms of AUC and 14 out
of 16 machines in terms of pAUC. On the other hand,
the HPF approach outperformed the baseline system
in 11 out of 16 machines in terms of AUC and 11 out
of 16 machines in terms of pAUC. By averaging the
obtained AUC and pAUC values for all machine IDs,
and then for all machine types, our results are con-
sidered better than the baseline system results for the
development set.

Using the average AUC and pAUC values for each
machine type, we were able to position our results
among the results of the participating teams, includ-
ing the baseline system. Fig.14 shows the comparison
between our results and the results of the participating
teams [19, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62] on each ma-
chine type, in terms of AUC and pAUC. Fig.15 shows
the overall position of our results compared to the re-
sults of the teams, by averaging the values of AUC
and pAUC from all machine types given that achiev-
ing high AUC and pAUC for all machines is considered
important [19].

The process evaluation
Compared to the baseline system and to the submis-
sions in the challenge, our method is the only method
that did 0-training. The rest of the submissions did
train the anomaly score so that the AUC and pAUC
are maximized. This training phase is nevertheless part
of the challenge and done by only normal data. Addi-
tionally, several methods applied de-noising techniques
and complex filers. In our work, we did not use any
complex de-noising technique. Moreover, several meth-
ods had different system configurations for each ma-
chine type to optimize the anomaly scores and maxi-
mize the metrics. In our work, we used the exact same
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scheme among all the 16 target machines with the
same parameters.

Therefore, the achieved results in AUC and pAUC
values, are satisfactory given that we had no training,
no complex preprocessing phase and no dependency
on the target machine. Instead, we kept the process as
simple as possible to be fully understood and better
interpreted by operators even without a data science
background to have a solution that can be reproducible
and thus used in industry. It is true that better re-
sults can be obtained by applying more sophisticated
de-noising techniques or further tuning. However, to
be applied and integrated in industry, a compromise
should be made between the complexity of the pro-
posed system, its understandability and the accuracy
of detection. By the current work, we believe that our
proposal satisfies these criterias.

Consequently, our solution, based on our scheme, is
provided as a white box and has following advantages:
(1) it can be in operation right after a normal data set
is obtained usually in a few days and (2) it can be built
into conventional operation and maintenance systems
without advanced background in artificial intelligence
or data science.

Discussion
In this paper, we did not propose a novel predictive
scheme, but instead we applied our predictive scheme
on composite and more complex systems compared to
our previous work [13]. Our goal is to validate the
scalability and generalization of our solution and its
applicability to industry. In our previous work [13],
we were able to achieve an accurate anomaly detec-
tion, tracking and prediction using vibration data from
bearings as singular systems. In the current work, us-
ing the same predictive scheme as in [13], we were able
to achieve an accurate anomaly detection and predic-
tion using the audio data from valves, pumps, fans and
slide-rails as composite systems.

Table 4 summarizes the differences between the
dataset analyzed in [13] and the dataset analyzed in
the current work. On the other hand, Table 5 sum-
marizes the analysis parameters and process for both
works.

Despite having different data source, different data
characteristics, different complexity level of the target
monitored machine, we were able to maintain the same
core technology, and not re-design or re-develop our
method to adapt to the challenges raised by these dif-
ferences. Furthermore, we used the original measure-
ments length as segment length.

In the [13], we applied our scheme on the IMS bear-
ing dataset [14, 15]. The dataset is a run-to-failure test

data. Therefore, we had two research directions: to dif-
ferentiate between anomalous data and normal data
and we also implemented our proposal as a real time
data tracker (RTDT) to detect early signs of degra-
dation and predict failure. In the MIMII dataset, the
anomalies were deliberately caused in the machines
and therefore we applied our scheme only to detect
anomalous sound data from normal data rather than a
real-time tracker. Theoretically, if the machines in the
MIMII dataset were degrading naturally rather than
deliberately damaged, the data would move gradually
out of the normal (safe) zone and the warning factor
would increase as we showed in [13]. But such feature
cannot be verified given the current data. However,
in both works, we effectively detected and recognized
the anomalies, given normal data only as reference and
without any training.

To be also noted, the dimension reduction and vi-
sualization technique used in both works, is toorPIA.
However, as we discussed in [13], t-SNE can be also
used instead, with the same data vector structure, to
generate a t-SNE-based RM.

Consequently, we confirm that our solution is scal-
able and generic.

Conclusion and future works
The results presented in this paper prove that our
scheme: (1) is scalable by accurately detecting and rec-
ognizing anomalous data, given normal data only, on a
composite system and (2) can be generalized. We did
not just have relatively high AUC and pAUC in all
the machines, but we used the same scheme and same
anomaly formula, without training, for all the machine
IDs and types.

Therefore, we confirmed that our solution is generic
and applicable on the preventive maintenance field
from different perspectives and on different scales:

• Element in a machine [10, 13].
• A facility: valve, pump, fan and slide-rail as in the

current work.
• Infrastructure diagnosis: Road Damage Diagnosis

using vibration data measured from an in-vehicle
monitoring system.

Accordingly, the field of application can further be ex-
tended to:

• Intelligent robotic systems: monitoring the motion
of manipulators to prevent possible unexperienced
anomalous behavior that can lead to catastrophic
accidents in the workplace.

• Building facilities: monitoring the vibration in
lifts and escalators to prevent (deadly) faults.

• Autonomous systems in Simultaneous Localiza-
tion and Mapping (SLAM) applications: detection
of unexperienced abnormalities and obstacles in
an unknown environment.
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• Wearable devices for health monitoring: Heart
Rate Variability (HRV) vs. stress level and sleep
quality.

Our solution, based on our scheme, is provided as low-
intrusive white box. Users will have the following mer-
its: (1) our solution can be in operation right after
a normal data set is obtained usually in a few days
and (2) our solution can be built into conventional
operation and maintenance systems without advanced
background in artificial intelligence or data science.
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Figures

Figure 1 The process flow of our predictive scheme

Figure 2 Placing the newly acquired data on the RM

Figure 3 The evolution of an audio-clip through the
preprocessing phase (a) time domain data extracted from the
.wav file (b) original spectrum (c) smoothed spectrum

Figure 4 The obtained RMs for all machine types and IDs
with FFR approach

Figure 5 Spectral distribution of the RMs of valve 00, pump
00, fan 00 and slider 00

Figure 6 The obtained RMs for all machine types and IDs
with HPF approach
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Figure 7 The obtained anomaly scores for valve

Figure 8 The obtained anomaly scores for pump

Figure 9 The obtained anomaly scores for fan

Figure 10 The obtained anomaly scores for slide-rail

Figure 11 Presentation in the ROC space of (a) a discrete
classifier and (b) a non-discrete classifier

Figure 12 Comparison of (a) discrete classifiers and (b)
non-discrete classifiers

Figure 13 Comparison of our obtained AUC and pAUC values
for each machine ID to the baseline system results

Figure 14 Positioning of our results compared to the
participating teams for each machine type (a) valve, (b)
pump, (c) fan and (d) slide-rail

Figure 15 Overall positioning of our work compared to the
participating teams

Table 1 Digest of the development dataset

Target machine
Development set

Training set Test set
Valve00 891 219
Valve02 608 220
Valve04 900 220
Valve06 892 220
Pump00 906 243
Pump02 905 211
Pump04 602 200
Pump06 936 202
Fan00 911 507
Fan02 916 459
Fan04 933 448
Fan06 915 461

Slide-rail00 968 456
Slide-rail02 968 367
Slide-rail04 434 278
Slide-rail06 434 189

Table 2 Summary of the multidimensional space for the similarity
quantification to generate the RM

Case no.
Machine type Multidimensional space structure

and ID FFR approach HPF approach
1 Valve 00 (891×372) (891×302)
2 Valve 02 (608×372) (608×302)
3 Valve 04 (900×372) (900×302)
4 Valve 06 (892×372) (892×302)
5 Pump 00 (906×372) (906×302)
6 Pump 02 (905×372) (905×302)
7 Pump 04 (602×372) (602×302)
8 Pump 06 (936×372) (936×302)
9 Fan 00 (911×372) (911×302)

10 Fan 02 (916×372) (916×302)
11 Fan 04 (933×372) (933×302)
12 Fan 06 (915×372) (915×302)
13 Slide-rail 00 (968×372) (968×302)
14 Slide-rail 02 (968×372) (968×302)
15 Slide-rail 04 (434×372) (434×302)
16 Slide-rail 06 (434×372) (434×302)

Table 3 Our AUC and pAUC values compared to the baseline
system by the organizers

Machine type FFR approach HPF approach Baseline
and ID AUC pAUC AUC pAUC AUC pAUC
Valve00 87.22 76.78 98.51 92.43 68.76 51.70
Valve02 89.78 73.72 97.06 91.97 68.18 51.83
Valve04 77.95 63.77 90.83 80.78 74.30 51.97
Valve06 65.98 55.13 72.20 56.84 53.90 48.43
Avg. 80.23 67.35 89.65 80.50 66.28 50.98

Pump00 86.37 76.73 70.25 55.53 67.15 56.74
Pump02 66.90 63.11 67.21 61.87 61.53 58.10
Pump04 70.61 58.52 90.49 83.68 88.33 67.10
Pump06 73.58 70.53 62.03 49.32 74.55 58.02
Avg. 74.36 67.22 72.49 62.6 72.89 59.99

Fan00 57.41 50.32 56.07 50.48 54.41 49.37
Fan02 77.51 60.63 79.32 56.47 73.40 54.81
Fan04 73.74 59.58 51.82 52.13 61.61 53.26
Fan06 81.35 60.91 68.44 54.52 73.92 52.35
Avg. 72.50 57.86 63.91 53.4 65.83 52.48

Slide-rail00 94.10 86.04 76.54 52.83 96.19 81.44
Slide-rail02 71.57 52.73 69.14 52.53 78.97 63.68
Slide-rail04 93.40 82.52 98.25 95.59 94.30 71.98
Slide-rail06 72.71 58.42 84.48 69.84 69.59 49.02

Avg. 82.94 69.92 82.10 67.69 84.76 66.53

Table 4 The differences between the datasets in the application
of [13] and the current application

IMS dataset [14, 15] MIMII dataset [16, 17]
Data type Vibration Audio

Target Bearings Valve, pump, fan and slide-rail
Target complexity Singular system Composite system

Sensor attachement Directly Contactless
Sampling rate 20 kHz 16 kHz

Operation

Valve: repeated open/close
with different timing

Monotone Pump: suction from and
at constant discharging to a water pool

rotation speed Fan: normal work
Slide-rail: repeated slide

on different speeds
Test scenario Test-to-failure Seeded anomalies

Target condition Normal/Degraded/Failure Normal/Anomalous
Labels Not provided Provided
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Table 5 The analysis process and parameters for both applications

Application Current
of [13] application

Process

(1)Preprocessing (1)Preprocessing
(Segmentation (Segmentation,

FFT, FFT,
RM smoothing) smoothing)

generation (2)Similarity (2)Similarity
quantification quantification

(3)Visualization (3)Visualization
Geometry-based Geometry-based

Adding algorithm with algorithm with
test zero-data the gravity center
data as origin of the RM

as origin

Parameteres
Segment length 1 sec 10 sec
Spectrum size 128 512

Frequency resolution 78.13 Hz 19.58 Hz
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